
INFORMATION TECHNOLOGY

Reasoning Systems, Inc.

Reengineering and Rewriting Legacy Software Systems

One of the key issues in significantly changing how software is composed and used is what to
do about the existing software. The installed systems and data files—the so-called "legacy
systems"—represent far too great an investment to be discarded, regardless of how useful the
new software technology may be. A major difficulty is the wide variety of legacy systems, which
might be written in any of dozens of computer languages and language "dialects," as well as
countless specialized data formats. In 1984, Reasoning Systems, Inc., was launched to
develop programs to fix software problems related to complex legacy systems. During the late
1980s, Reasoning created a family of reusable components for reengineering in the COBOL,
C, FORTRAN, and Ada programming languages. These components were designed for the
customization of specific reengineering tasks.

In 1995, Reasoning submitted a proposal to the Advanced Technology Program (ATP) to
undertake technically high-risk research to develop software that would automate the
reengineering and rewriting of legacy software systems. ATP awarded cost-shared funding to
Reasoning through its focused program, Component-Based Software, which enabled the
company to strategically position itself for the burgeoning Year 2000 (Y2K) repair market.
Reasoning subsequently received more than $22 million in venture capital financing between
1996 and 2000 and grew from 12 people at the time of the ATP proposal in 1995 to more than
100 by 2000. At its peak, Reasoning made a significant impact as a leader in the Y2K software
repair market, both as a seller of effective, low-cost software toolsets and as an innovator in
software inspection tools. Today, after a sharp drop-off in the transformational software
purchasing that had fueled its explosive pre-2000 growth, a leaner Reasoning has refocused
its business model, secured an additional $9 million in venture funding, and continues to
commercially market the software technology developed during the ATP project.

COMPOSITE PERFORMANCE SCORE
 (based on a four star rating)
 * *

Research and data for Status Report 94-06-0026 were collected during January 2002.

Legacy Systems Consume High Percentage of
Corporate Resources

One of the key issues in significantly changing how
software is composed and used is what to do with
legacy systems. This is a problem not only for new
software technologies, but also for day-to-day
maintenance operations. In many large organizations,
maintenance of legacy systems consumes more then
90 percent of information systems resources. A major
difficulty is the wide variety of legacy systems, which
might be written in any of dozens of computer
languages and language "dialects," as well as
countless specialized data formats. Companies that

optimize business processes must often change legacy
information systems to support the new processes. The
required changes can involve new features, porting,
performance optimization, or bug fixes. Minor changes
can often be accomplished in a relatively painless
fashion by modifying a small amount of code. However,
major changes—such as porting a COBOL mainframe-
based system to a UNIX client/server-based
architecture built on a relational database—are typically
very difficult, expensive, and risky.

Major changes often require a switch not only of code,
but also of supporting tools (e.g., compilers and
editors), development processes (testing and version

control), and personnel. A major change is usually
made by some combination of discarding part or all of
the existing system, modifying existing parts, writing
new parts, and purchasing new or improved parts from
external vendors. If the change is accomplished
primarily through discarding the existing system and
buying or building new parts, the project is
characterized as a rewrite or redevelopment. If the
change is accomplished primarily by modifying the
existing system, the project is characterized as a
reengineering project. Rewriting and reengineering are
the extremes along a spectrum of strategies for change;
most major upgrades are accomplished by some
combination of the two.

Reasoning offered software technology that would
automate the rewriting and reengineering process for
companies who needed to update legacy systems.
However, to enter the larger software engineering
market, it needed to make significant advances in its
technological capabilities.

Expanding the Application of Data-Slicing Software

An organization's business policies, processes, and
procedures are often maintained on its legacy systems,
and it is inconceivable that these systems can simply
be abandoned when a new system is purchased. It is
equally implausible that all of an organization's legacy
systems and applications can be rewritten or replaced
as technology and business processes change.
Therefore, maintaining, reengineering, and migrating
these systems in a cost-effective and efficient manner
is an important option.

In its 1995 ATP proposal, Reasoning proposed to apply
the component-based automated code transformation
technology that it had been refining since 1984 to the
larger software reengineering industry. Reasoning
proposed to use the principles of reusable software
components and automated software composition to
solve this pervasive problem by establishing the
framework to easily create customized software
reengineering tools. The company would create
individual software components to handle interfaces
with standard languages such as C, COBOL, and
FORTRAN, and other components that implement
sophisticated reengineering techniques, such as
program data slicing, to build semantic models of the

legacy system. Other companies would then be able to
use these components to generate specific solutions for
their customers; one application, for example, might be
a software tool that extracts the implicit "business rules"
from existing systems with a particular COBOL dialect
and database.

An organization's business policies, processes,
and procedures are often maintained on its

legacy systems, and it is inconceivable that these
systems can simply be abandoned when a new

system is purchased.

In order to achieve its goal, Reasoning needed a
combination of static and dynamic semantic analysis of
software. The highlights of Reasoning's technical
approach were the following:

o Automatic composition of reengineering tool
components to support customization to
specific jobs and reuse across multiple
languages

o Use of program slicing and path feasibility
analysis to derive semantic models of legacy
code, such as business rules and system
invariants

o Animation of code execution in terms of
derived semantic models

o Analysis of derived semantic models to
support reengineering and composition of the
underlying legacy systems

Reasoning Proposes to Develop Slicing and Data
Flow

Program slicing has been recognized in computer
science research as a powerful technique for
understanding programs. This technique allows the
dissection and analysis of a program based on data
flow. Using the analysis, it is then possible to answer
many questions about how a program works. A key
problem with program slicing, however, has been
performance because the data-flow analysis necessary
for program slicing is computationally intensive. To

overcome performance issues with program slicing,
Reasoning took a creative approach. It made the data-
flow analysis incremental, an approach contrary to
typical algorithms at the time that effectively computed
the entire data-dependency graph for a program.
Reasoning hoped that its advanced research on
program slicing and its application to transformation
systems would be a key differentiator in the
marketplace.

Applications of the ATP-Funded Technology Could
Be Diverse

By creating reusable components and automated
composition techniques for adapting reengineering
capabilities to diverse languages and databases,
Reasoning's technology could reduce the time, cost,
and risk of reengineering across a wide variety of
legacy systems (e.g., COBOL-based business
applications and FORTRAN scientific applications).
First, improved reengineering productivity would lead to
increased reuse of legacy systems, fewer disastrous
"big-bang" redevelopment projects, extraction and
exposure of business logic from legacy systems, and
increased allocation of information systems resources
to develop new systems instead of maintaining legacy
systems. Second, by enabling cost-effective migration
of legacy systems to new information technologies,
demand for those technologies would be increased.

By creating reusable components and automated
composition techniques, Reasoning's technology

could reduce the time, cost, and risk of
reengineering across a wide variety of legacy

systems.

This would spur growth in high-value industries such as
personal computers, workstations, networks,
databases, multimedia, and software development. This
growth would lead to higher investment in research and
development (R&D), which would yield technological
advances in those areas. Third, this technology would
enable cost-effective migration of scientific software to
new computing technologies, such as massively parallel
computers that increase the productivity of scientists in

software-intensive fields, from weather simulation to
molecular biology.

ATP Support Accelerates Technology Development

To achieve commercial viability, however, Reasoning
needed an infusion of capital to complete the research
quickly before its international competitors caught up
and eliminated its competitive advantage. Because the
high-risk nature of this R&D project discouraged
venture capitalists, Reasoning proposed a $2 million,
three-year project to ATP. Without ATP funding,
Reasoning would have pursued many of the same
technical objectives of the project, but at only 10 to 20
percent of the funding level provided by the ATP award.
This lower funding level would have significantly
extended the schedule for delivering practical products.
Reasoning's proposed technology was promising and
the commercial advantage of rapid R&D was clear.
Moreover, future applications of the technology had the
potential to produce broad-based economic benefits
beyond its own market by improving end-user and
programmer productivity, as well as reducing high
hardware and software maintenance costs.

Reasoning Achieves Technical Success

Bringing control to reengineering and rewriting projects
through automation was Reasoning's stated high-level
goal for the ATP-funded project. Furthermore, the
company sought to design and prototype a framework
and a set of components to formally capture legacy
software systems and to build software reengineering,
reverse engineering, and migration applications.

Reasoning achieved its objectives. Perhaps the most
important goal that the company attained was the ability
to help programs meet quality and dependability
requirements by identifying and repairing defects in
legacy systems. The company also built a framework
that could easily be adapted to nonstandard languages
and operating systems. No two legacy software
systems are alike, and the problems that these systems
manifest are diverse. Therefore, in order to successfully
address legacy software, a toolset must be very flexible
so that it can adapt to a variety of situations. Several of
the key components that were developed demonstrated
this power of flexibility.

ATP-Funded Technology Helps To Solve Y2K
Problem

In 1996, companies were just beginning to address the
Y2K problem. Reasoning's management identified this
niche as a potential market for its ATP-funded
technology, and, in 1999, began to target this profitable
business. Reasoning attracted some top talent to drive
this change in strategy and soon obtained venture
capital support to begin commercializing its core
technology to analyze, identify, and repair Y2K bugs in
corporate computer systems. Analysts predicted that
this market could be $300 to $900 billion in the years
preceding 2000. Reasoning's growth was rapid. In three
years, the company raised almost $23 million in venture
capital investment, increased its staff from 12 to more
than 100, and established a national presence with
offices across the country. Reasoning successfully
developed and marketed its Y2K solution and made a
significant impact as a leader in the Y2K software repair
market both as a seller of effective, low-cost software
toolsets and as an innovator in software inspection
tools. Reasoning's unique approach to solving the Y2K
problem was based on the R&D conducted during the
ATP project.

Investors Continue To Commit Funds to Inspection
Tool

Reasoning transitioned its original software tool from a
transformation tool to a Y2K tool, and, finally, to an
inspection tool. ATP's funding support during the
technology's critical years helped Reasoning create an
innovative automated software inspection service that
enables major technology companies to dramatically
reduce the time, effort, and cost required to produce
quality software.

Reasoning's unique approach to solving the Y2K
problem was based on the R&D conducted during

the ATP project.

Reasoning's solutions analyze the source code and
pinpoint the exact location of crash-causing and data-
corrupting defects before testing. With Reasoning's
inspection database, a company can benchmark
software quality across projects, companies, and
industries.

Despite a reduction in force since 2000, Reasoning has
reinvented itself and its technology several times in
order to anticipate and react to changing market needs
and conditions. A venture capital round of investment of
$9.2 million in 2001 reaffirmed investors' commitment to
Reasoning's technology. Reasoning is still developing
the inspection tool with a restructured workforce of
approximately 20 persons. The company remains
hopeful that spending in the market will recover to pre-
September 2001 spending levels.

Conclusion

What began as a highly academic and technical
company became a fast-growing software firm that
attracted top venture capital investors and recruited a
proven management team from larger, public
companies. ATP funding was the catalyst for
Reasoning's new R&D capabilities and enabled it to
become a viable software firm worthy of investment. As
of January 2002, Reasoning continues to market the
technology developed during the ATP project.

PROJECT HIGHLIGHTS

Reasoning Systems, Inc.

Project Title: Reengineering and Rewriting Legacy
Software Systems (Component-Based Reengineering
Technology)

Project: To use the principles of reusable software
components and automated software composition to tackle
the problem of numerous legacy systems within a
corporation by establishing the framework for easily
creating customized software reengineering tools.

Duration: 1/1/1995-12/31/1997
ATP Number: 94-06-0026

Funding (in thousands):

ATP Final Cost $ 2,000 58%
Participant Final Cost 1,443 42%
Total $ 3,443

Accomplishments: Reasoning achieved the
following goals during the ATP-funded project:

o Reduced the time, cost, and risk of
reengineering across a wide variety of legacy
systems by creating reusable components and
automated composition techniques for adapting
reengineering capabilities to diverse languages
and databases

o Enabled cost-effective migration of scientific
software to new computing platforms, such as
massively parallel computers that increase the
productivity of scientists in software-intensive
fields, from weather simulation to molecular
biology

Commercialization Status: Reasoning applied
its ATP-funded technology to the Y2K problem. Since then,
the company has marketed the technology developed
during the ATP project. After being re-branded several
times, the new technology provides automated software
inspection services that enable major technology
companies to dramatically reduce the time, effort, and cost
required to produce quality software.

Outlook: Reasoning transitioned its original software
tool from a transformation tool to a Y2K tool and, finally, to
an inspection tool. The company has reinvented itself and
its technology several times to anticipate and react to
changing market needs and conditions. After receiving $23
million in venture capital investment between 1996 and
2000, a venture capital round of investment of $9.2 million
in 2001 reaffirms the investment community's commitment
to this technology as Reasoning refocuses on a new
market.

Composite Performance Score: * *

Number of Employees: 12 employees at project
start, 20 as of January 2002

Focused Program: Component-Based Software,
1994

Company:
Reasoning Systems, Inc.
700 East El Camino Real
Suite 300
Mountain View, CA 94040

Contact: Karl Schimpf
Phone: (650) 429-0350

Research and data for Status Report 94-06-0026 were collected during January 2002.

